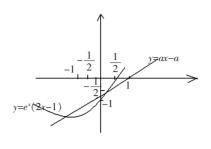
$[g(x)]_{max} = -2e^{-\frac{1}{2}}, \stackrel{\text{def}}{=} x =$ 0时,g(0)=-1,g(1)=3e>0. 直线 v=ax-a 恒 过(1.0)斜率为 a, 故 $a>g(0)=-1, \coprod g(-1)$ =-3e <sup>-1</sup>≥-a-a,解得  $\frac{3}{2e} \leq a < 1$ ,故选 D.



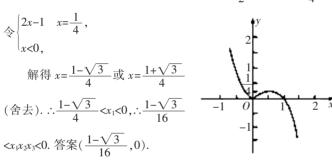
## 二、构建函数模型并结合其图像研究方程根的范围

**例 3.** 对于实数 a 和 b ,定义运算"\*": $a*b=\begin{cases} a^2-ab \ , a \leqslant b \\ b^2-ab \ , a > b \end{cases}$  设 f(x)=(2x-1)\*(x-1),且关于 x 的方程  $f(x)=m(m \in \mathbb{R})$ 恰有三个 互不相等的实数根  $x_1, x_2, x_3, 则$   $x_1x_2x_3$  的取值范围是 \_\_\_\_\_\_.

【解析】由定义可知, 
$$f(x) = \begin{cases} (2x-1)x, x \leq 0 \\ (-x-1)x, x > 0 \end{cases}$$
作出函数  $f(x)$ 

的图像,如图所示. 由图可知,当  $0 < m < \frac{1}{4}$ 时, $f(x) = m (m \in \mathbb{R})$ 恰 有三个互不相等的实数根  $x_1, x_2, x_3$ .

不妨设  $x_1 < x_2 < x_3$ ,易知  $x_2 > 0$ ,且  $x_2 + x_3 = 2 \times \frac{1}{2} = 1$ ,∴ $x_2 x_3 < \frac{1}{4}$ .



## 三、构建函数模型并结合其图像研究量与量之间的大小 关系

**例 4.** 函数  $f(x) = \frac{ax+b}{(x+c)^2}$  的图像如图所示,则下列结论成

立的是 ( )



(C) 
$$a$$
<0,  $b$ >0,  $c$ <0

(D) 
$$a < 0$$
,  $b < 0$ ,  $c < 0$ 

【解析】由  $f(x) = \frac{ax+b}{(x+c)^2}$  及图像可知, $x \neq -c$ ,-c > 0,则 c < 0;

当 x=0 时,  $f(0)=\frac{b}{a^2}>0$ , 所以 b>0; 当 y=0, ax+b=0, 所以  $x=-\frac{b}{a}>0$ 0.所以 a<0. 故 a<0.b>0.c<0.选 C.

四、构建函数模型并结合其几何意义研究函数的最值问 题和证明不等式

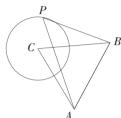
**例** 5. 已知实数满足 
$$x$$
,  $y$ , 满足  $\begin{cases} x-2y+4 \ge 0, \\ 2x+y-2 \ge 0, \\ 3x-y-3 \le 0, \end{cases}$ 

取值范围是

【解析】由图知原点到直线 2x+y-2=0 距离平方为  $x^2+y^2$  最 小值,为  $(\frac{2}{\sqrt{5}})^2 = \frac{4}{5}$ ,原点到点(2,3)距离平方为  $x^2 + y^2$  最 大值,为 13,因此  $x^2+y^2$  取值范围为[ $\frac{4}{5}$ ,13].

**例 6**. 如图,  $\Delta ABC$  是边长为  $2\sqrt{3}$  的正三角形, P 是以 C 为圆心、半径为 1 的圆上任意一点、则 $\overrightarrow{AP} \cdot \overrightarrow{BP}$  的取值范围

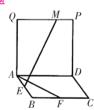
【解析】因为 $|AC|=|BC|=2\sqrt{3}$ ,  $\angle ABC=60^{\circ}$ . 所以 $\overrightarrow{AC} \cdot \overrightarrow{BC}=2\sqrt{3}$ .  $2\sqrt{3}\cos 60^{\circ}=6$ . 因为 $\overrightarrow{AP}=\overrightarrow{AC}+$  $\overrightarrow{CP}$ ,  $\overrightarrow{BP} = \overrightarrow{BC} + \overrightarrow{CP}$ , 所以 $\overrightarrow{AP} \cdot \overrightarrow{BP} =$  $(\overrightarrow{AC} + \overrightarrow{CP}) (\overrightarrow{BC} + \overrightarrow{CP}) = \overrightarrow{AC} \cdot \overrightarrow{BC} +$  $\overrightarrow{CP}(\overrightarrow{AC}+\overrightarrow{BC})+\overrightarrow{CP}^2$ . 因为|CP|=1. 所



以 $\overrightarrow{AP} \cdot \overrightarrow{BP} = 6 + \overrightarrow{CP} (\overrightarrow{AC} + \overrightarrow{BC}) + 1 = 7 + \overrightarrow{CP} (\overrightarrow{AC} + \overrightarrow{BC})$ . 因为  $\Delta ABC$ 是边长为  $2\sqrt{3}$  的等边三角形... 向量 $\overrightarrow{AC}$  + $\overrightarrow{BC}$  是与  $\overrightarrow{AB}$  垂直且 方向向上,长度为6的一个向量,由此可得,点P在圆C上运 动,当 $\overrightarrow{CP}$ 与 $\overrightarrow{AC}$ + $\overrightarrow{BC}$ 共线同向时, $\overrightarrow{CP}$ ( $\overrightarrow{AC}$ + $\overrightarrow{BC}$ )取最大值,且这 个最大值为 6 当 $\overrightarrow{CP}$ 与 $\overrightarrow{AC}$ + $\overrightarrow{BC}$ 共线反向时, $\overrightarrow{CP}$ ( $\overrightarrow{AC}$ + $\overrightarrow{BC}$ )取最 小值,且这个最小值为-6,故 $\overrightarrow{AP}$ · $\overrightarrow{BP}$ 的最大值为7+6=13,最 小值为 7-6=1. 即 $\overrightarrow{AP} \cdot \overrightarrow{BP}$ 的取值范围是[1,13].

## 五、构建立体几何模型研究代数问题

例 7. 如图, 四边形 ABCD 和 ADPO 均为正方形,它们所在的平面 互相垂直, 动点 M 在线段 PQ 上, E、 F分别为AB、BC的中点. 设异面直线 EM与AF所成的角为 $\theta$ ,则 $\cos\theta$ 的最



【解析】建立坐标系如图所示. 设 AB=1,则 $\overrightarrow{AF}=(1,\frac{1}{2},0)$ ,

 $E(\frac{1}{2},0,0)$ . 设  $M(0,y,1)(0 \le y \le 1)$ , 则 $\overrightarrow{EM} = (-\frac{1}{2},y,1)$ ,由于异

面直线所成角的范围为 $(0,\frac{\pi}{2}]$ ,所以  $\cos\theta = \frac{\left|-\frac{1}{2} + \frac{1}{2}y\right|}{\sqrt{1 + \frac{1}{4} \cdot \sqrt{\frac{1}{4} + y^2 + 1}}}$ 

$$= \frac{2(1-y)}{\sqrt{5} \cdot \sqrt{4y^2+5}} \cdot \left[ \frac{2(1-y)}{\sqrt{4y^2+5}} \right]^2 = 1 - \frac{8y+1}{4y^2+5}, \Leftrightarrow 8y+1=t, 1 \leq t \leq 9, \text{则} \frac{8y+1}{4y^2+5}$$

$$= \frac{16}{t+\frac{81}{t}-2} \geq \frac{1}{5}, \text{当 } t=1 \text{ 財取等号. 所}$$

$$V \cos\theta = \frac{\left| -\frac{1}{2} + \frac{1}{2} y \right|}{\sqrt{1 + \frac{1}{4} \cdot \sqrt{\frac{1}{4} + y^2 + 1}}} =$$

